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Abstract. We devised a new algorithm — tabu search in
descriptor space — for searching the global energy min-
imum structure of atomic clusters. In each cycle, the
algorithm generates many cluster structures randomly,
transforms them to a standard form by “‘symmetrization
of interatomic distances”, and calculates structural de-
scriptors for each. Clusters are then screened according
to a model energy obtained by interpolation in descrip-
tor space, and only a small fraction (10% or less) are
retained for energy evaluation. This cycle is repeated
many times. In a final step, clusters are sorted by
increasing energy and optimized by conjugate gradient.
This method requires between 10 and a 100 times fewer
energy evaluations than a good genetic algorithm for
locating the global minimum of n-atom clusters (n < 35)
described by a Lennard-Jones potential. It seems a very
promising method for global optimization on energy
surfaces calculated by first-principles.

Keywords: Global optimization — Tabu search —
Lennard-Jones — Clusters — Structure

1 Introduction

The properties of small nr-atom clusters (roughly
n < 100) differ from bulk properties and show specific
size effects [1]. These properties can be very sensitive to
structure. But little is known about the structure of small
clusters apart from a few very small clusters (n < 10),
and some plausible candidate structures or guiding
principles for larger ones (n > 10), for example, the
tendency of rare-gas clusters to maximize coordina-
tion [2], and rules for stability specific to fullerenes [3].
This makes it very difficult to understand size-dependent
properties of clusters.
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The lowest-energy structures are usually the most
abundant in experiments on clusters. So, the relevance of
theoretical studies depends critically on discovering the
lowest-energy cluster isomers [4, 5]. But this is a very
difficult problem. There are at least 1506 distinct local
minima for the 13-atom Lennard-Jones (LJ) cluster [6]
and good reasons to expect roughly as many local
minima for more realistic potentials modeling various
elements. The number of distinct minima on the poten-
tial-energy surface of clusters 4,, grows exponentially
with n [6, 7]. The number of minima of n-atom clusters
of most elements should be in the thousands for n=13—
15 and probably on the order of 10*-10° for 15 < n < 25.
Mathematically, finding plausible isomers of 4, amounts
to doing a global minimization of energy with respect to
nuclear coordinates.

Apart from the large number of possible isomers,
what makes cluster geometry optimization so difficult is
the computer cost of reliable energy calculations. For
example, the time for one energy evaluation of Li;s by
linear combination of atomic orbitals Kohn—Sham (KS)
theory with a large basis set on our computer is roughly
1 h. This could go down by orders of magnitude if we
used semiempirical theory or a much faster computer,
but it would not change the essence of the problem: the
computing cost for one energy evaluation is extremely
large compared to that of all other operations in a global
optimization — generation of random numbers, calcula-
tion of interatomic distances, update of geometries, etc.
Therefore, it is of paramount importance to devise glo-
bal optimization methods that require as few energy
evaluations as possible, especially if one uses a first-
principles method for evaluating the energy and forces.

Local optimization is relatively simple and many
good algorithms have now become standard [8]. Typi-
cally, the energy gradient is used to update geometry in a
way that lowers energy for most steps in the optimiza-
tion. The nearest minimum is often reached in a small
number (approximately 3n) of steps.

Global optimization is much harder because it has
two contradictory requirements: the search has to
explore the entire space of variables so as not to miss the
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global minimum, but it has to be more thorough in low-
energy regions for the sake of efficiency. A number of
global optimization algorithms have been used for
clusters, including simulated annealing (SA) [9], genetic
algorithms (GA) [10, 11, 12, 13], and many others [14,
15, 16, 17, 18, 19, 20]. Even with the best of those
optimization methods, very many energy evaluations are
required before finding the global minimum. For in-
stance, a combination of GA and conjugate gradient
(CG) local optimization typically requires approxi-
mately 100,000 energy evaluations before finding the
global minimum of a 30-atom LJ cluster. Because of
that, energy evaluations must be very fast, which prac-
tically rules out first-principles energy methods [5]. By
and large, global optimizations of clusters have been
limited to empirical potentials and semiempirical energy
surfaces: these methods can model realistically only a
few elements. Aside from their disappointing perfor-
mance, we generally find current cluster optimization
algorithms unsatisfactory for three theoretical reasons.

First, most algorithms use only the energy evaluated
at the last structure (as in SA) or the last few structures
(as in GA) in deciding what structure should be con-
sidered next. This is wasteful. Instead, it would seem
advantageous to take into consideration all the energies
and structures visited in previous steps and make max-
imum use of the available information. .

Second, algorithms often generate geometries R that
are unimportant for reasons obvious to a person but
not to a computer algorithm. Roughly speaking, these
unimportant geometries fall into two categories which
we call “‘redundant geometries” and “‘impossible
geometries”’. Redundant geometries are the multitude
of geometries that can be obtained by small displace-
ments from a local minimum. They can be problematic
near the end of a standard SA optimization when the
simulation temperature is very low and the algorithm
steps through a long sequence of similar structures.
Impossible geometries are those that have a very high
energy for reasons obvious to anyone who has some
knowledge of physical chemistry. An example is any
geometry where one interatomic distance is much
smaller than the corresponding diatomic bond length.
The various types of “basin-hopping” algorithms [17]
avoid redundant and impossible geometries by doing a
local optimization on every candidate structure gener-
ated by a global optimizer such as GA [10, 11]. This
way, the GA effectively operates only within the set of
local minima, not the entire set of possible structures.
This makes the task much easier for the GA, but it
comes at a high price: every GA step gets replaced by
“GA plus local optimization™, which increases the
number of energy evaluations per GA step by a factor
of roughly (3n+1). In addition, every local optimiz-
aton requires approximately 3z evaluations of the
gradient.

Third, there are some problems, for various algo-
rithms, associated with how new structures are created.
In SA it is difficult to allow the random walker to go
over high energy barriers between minima in systems
with strong directional bonds (such as C, and Si,). The
simplest solution to this, going to very high simulation

temperatures, does not work because atoms start
evaporating from the cluster. In GA, it is hard to de-
vise a procedure for creating a child cluster from two
parent clusters such that meaningful structural features
are passed on from the parents to the child. The
standard method is to cut each parent along a dividing
plane and assemble a m-atom fragment of parent A
with an (n — m)-atom fragment of parent B to create an
n-atom child [11]. The Cartesian coordinates of the
child’s atoms look similar to those of the parents, but
the relative atomic positions near the dividing plane are
not at all like those in the parents. Child clusters al-
most always have an unphysically high energy (they are
“impossible geometries”). The usual solution to this
problem, local optimization of the child cluster, is only
partly successful: it tends to preserve the structural
features of the parents far from the dividing plane but
not near it.

We devised a method that avoids the theoretical
problems already mentioned and that shows very
promising performance on small (r < 40) LJ clusters. It
consists of several parts and is a meta-algorithm more
than an algorithm. It has two drawbacks: it is more
complicated, and requires more user intervention, than
most algorithms. But it has a significant efficiency
advantage: it is at least 1 order of magnitude more
economical than the current best methods. It uses the
main idea of tabu search [21], which is to avoid trying
the same solution more than once. The other defining
feature of our method is that it uses structural descrip-
tors such as “mean atomic coordination” and ‘“‘mean
nearest neighbor interatomic distance™ to describe clus-
ter structure, in addition to atomic coordinates. These
descriptors are used to implement the rules for avoiding
previous structures, and also as interpolation variables
for calculating a model energy from those of previously
visited structures. We call our method tabu search in
descriptor space (TSDS).

The next section gives a detailed description of the
TSDS algorithm that we used for optimization of LJ
clusters. In Sect. 3, we compare the performance of
TSDS for optimization of LJ clusters with 10—40 atoms
to that of two standard methods: a GA (one of the best
methods known for cluster optimization) [10], and a
random search (which is inefficient but very simple). In
Sect. 4 we discuss the prospects of using TSDS with KS
density functional theory (DFT) and draw some con-
clusions.

2 Tabu search in descriptor space

The main steps for the optimization of a n-atom cluster
by TSDS are outlined in the following. Additional
details for some of the steps are given in separate
subsections for clarity.

1. Input the number of atoms, n, and parameters that
control the optimization: dy, dmin, dmax> Ni, Ne, K, 0i,
o, gi, or, p;, and py.

2.  Generate initial random atomic coordinates for N;
clusters (see Sect. 2.3) and set M = N,.



3. Modify each of the M cluster geometries by an
operation that we call “‘symmetrization of inter-
atomic distances” (SID, see Sect. 2.4) to bring it
into a standard form. This makes the initial main set
M of clusters.

4. Set the cycle counter variable ¢ := 1.

5. Set the three main control parameters of TSDS for
this cycle, d, o, and p, as functions of ¢ (Sect. 2.8).

6. Calculate, or retrieve, the energy U; (i = 1, M) for all
clusters in the main set .# and set Uy = min{U;}.

7. Assign to each cluster in .# a Boltzmann weight
w; = exp[(Up — U;)/9).

8. Go through steps 8.1-8.4 for k = 1,K to generate a
temporary set %" of candidate clusters for this cycle.

8.1. Select one of the M clusters in .# with probability
equal to w;/ SV w,.

8.2. Select a geometric operation at random among
these three: (a) sequence of single atom hops
(Sect. 2.5); (b) single atom relocation (Sect. 2.6);
(c) multiple atomic displacements (Sect. 2.7). We
pick these operations with probabilities equal to
0.7, 0.15, and 0.15, respectively. Then create a new
candidate cluster “4” by doing the selected opera-
tion on the parent cluster i followed by SID.

8.3. Calculate the descriptors for the kth candidate
cluster (Sect. 2.1).

8.4. Calculate a model energy for the kth candidate
cluster by interpolation in descriptor space
(Sect. 2.2), and then add the coordinates, descrip-
tors, and model energy of this candidate to 7.

9. Assign a penalty score (Sect. 2.8) to each cluster in
. Select the one with lowest score and calculate its
energy. Add this cluster’s coordinates, energy, and
descriptors to ., reset 4 to an empty set, and
update the counters M :=M + 1 and c:=c+ 1.

10. If ¢ < N, go to 5. Otherwise, go to 11.

11. Put all clusters in order of increasing energy. Go
down the list and do a CG optimization for each
cluster ““/” that satisfies these two conditions: (a)
U; < Uy + U, where Uy is a tolerance typically set
equal to 8.0 (8 times the diatomic bond energy) for
LJ clusters; and (b) the penalty score (Eq. 11)
calculated by summing over the set of structures
that previously satisfied conditions (a) and (b) is
smaller than some threshold value. For condition
(b), we used ¢ =0.20 in Eq. (11) and a penalty
threshold of 2.0. This way of doing the final
screening of structures limited the number of times
we rediscovered some local minima to roughly 3,
and typically yielded ten distinct local minima. We
updated U, whenever a lower energy minimum was
found.

2.1 Descriptors

Descriptors are useful because they carry more insight
about structure than atomic Cartesian coordinates and
only a few descriptors (six in our case) are normally
needed instead of 3n Cartesians. The six descriptors we
used are as follows. We define the coordination number
of an atom, ¢, as the number of atoms located within a
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sphere a radius dy.x centered around atom k. Four
descriptors are derived from these coordination num-
bers: the mean, root-mean-square (rms) scatter, mini-
mum, and maximum of atomic coordinations.

Mean(c) = (l/n)zn:ck (1)

" 1/2
Rms(c) = (}:k%-nmanagf/n> (2)

c_ =min{c;} (3)

" = max{c;} (4)
Two descriptors are derived from the moments of inertia
Ia > Ib > [c~

o o= o) 4 (o = L) + (l = 1)’ )

2+ 12 +12

n=_2L—-1I,-1)/l, (6)
These descriptors quantify the departure from spherical
shape ({) towards a more oblate or more prolate structure

(). They were found to be useful for analyzing trends in
cluster isomer energies in Ag [24] and Li [25] clusters.

2.2 Energy estimate by interpolation

At any point in the search (except the very beginning)
atomic coordinates of every cluster i in the main set are
kept in memory along with six descriptors Dj; (I = 1,6)
and the energy U;. When a candidate cluster £ is formed,
its energy is estimated by interpolation over the energies
of the M clusters that make up the current main set .Z.
The distance in descriptor space between any two
clusters i and k is defined as

p 1/2

Ay = Z(Dli — Di)*/(Dimax — Dimin)’ , (7)
=1

where Djmax = max{Dy;} is the largest value of descrip-
tor / among clusters of the main set, and D; i, is the
smallest value. Having (D;max — Dimin) in the denomi-
nator amounts to normalizing each descriptor so that its
range is equal to 1. This way, we ensure that all
descriptors are given the same importance in the
interpolation and in the score (Sect. 2.8). The interpo-
lation that we used is a simple version of a general
formula discussed by Bettens and Collins [26]:

o 2 UiAy
U=Trca
Zi Aik
As the search progresses and M increases, the desciptor
space gets filled with clusters having known energies U;;
therefore, energy predictions by interpolation become
progressively better. This is particularly useful when the
cost of energy evaluation is much higher than the cost of

interpolating on a few hundred numbers, as is the case
for KS DFT. Note that the choice of descriptors is

(3)
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important for the accuracy of energy predictions by
interpolation: if there is no correlation between descrip-
tors and energy, the predictions are unreliable except for
the special case where the descriptors of a candidate are
nearly identical to those of a cluster in the main set.

2.3 Making random clusters

The first atom is put at the origin. For each of the
remaining atoms “;” (j = 2, N), we do the following. A
reference atom “r” is selected at random among the
j— 1 previous ones; next, a distance “d” is generated
randomly in the interval [dmin, dmax]; then, a random unit
length vector (x, y, z) is generated. We assign coordinates
xj=x +dx, y, =y +dy, and z; =z 4+ dz to the new
atom j.

2.4 Symmetrization of interatomic distances

The main idea is to think of the set of atom pairs as made
of two subsets: bonded pairs (dj; < dinax) and nonbonded
pairs (dij > dmax). For each pair ij we calculate the
interatomic distance d;; and set a target distance t;; = dp if
dij < dmax and t;; = 1.1dmax if djj > dmax. The factor 1.1
could in fact be any number larger than 1 but not too
large; it does not have to be precisely 1.1. Then we enter a
cycle of several (typically 50) iterations. At each iteration,
we copy the coordinates of all atoms R = (7,75,...,7,)
into a temporary vector ¥ = (3,h,...,¥). Next, we go
through every atom pair ij and update the temporary
coordinates so as to bring interatomic distances closer to
their target values. If f; > dipax and d,J > dmax we do
nothing; otherwise, we elongate bond ij if it is too short
and shorten it if it is too long, and update Y. Of course,
any change in one bond length affects several bond
lengths. That is why we need an iterative procedure with
a temporary copy of coordinates at each iteration, and
also is why we need a mechanism that makes atoms i and
j repel whenever their distance falls below dp,x if those
atoms initially had dj; > dnax. A similar technique was
used in the optimization of peptide conformations [27].
A natural choice for dy would be 1.000 (in units of
equilibrium diatomic bond length) but we found that
dy = 1.017 gives slightly better optimization runs and
that is what we used in the LIJ cluster calculations
reported here.

2.5 Operation 1: Atomic hops

This operation moves a single atom to a new position
through a sequence of hops. First, we pick an atom j at
random. Then, we calculate the distances dj between
atom j and all other atoms and form the set of neighbors
of j, i.e., atoms k for which dj < dnax. Next we pick a
random unit length vector (x,y,z), and pick a random
integer K in [1, J], where J is the smallest of four and the
number of neighbors of atom j. We calculate normalized
scalar  products  py = (1/dj) (.7.2) - [(xk, i 26)—
(x;,¥j,z;)] for each neighbour k. We put the neighbours

of j in increasing order of p; and select the K neighbors
with largest value of p;. The net result of all this is to
select K neighbors which lie closest to a certain direction
from atom j and which are often neighbors of each
other. Then we calculate a “mirror point” 7y as the
average of the positions of the K neighbors that were
selected:

=(1/K)Y F 9)

n=1

We then let atom j “hop” from its current position 7 to
the “reflection point” 7, = 27, — 7. This is analogous to
the kind of moves used in simplex optimizations [28]. The
hop is accepted if |[F; — 7j| > dmin, otherwise it is rejected
and a new hop is attempted. Next, we calculate all
distances between atom j at its new position and the
remaining (N — 1) atoms. If all of those distances are
greater than dy,;, /2, we stop the hopping sequence and
perform a SID operation. Otherwise, we let atom j take
another random hop. By continuing the hopping
sequence until all d; are greater than dpin/2 we ensure
that atom j ultimately lands in a position where it has at
least one neighbour and no atom in its immediate vicinity.
Otherwise, the SID could fail or it could create a geometry
that looks very different from the input geometry.

2.6 Operation 2: Single atom relocation

First we find the six parameters of a bounding box that
contains all atoms, x,, x;, ,, ¥1, zy, and z;. For instance,
x, = max{x;} is the largest of all x atomic coordinates.
We pick one atom at random and move it to a random
position inside the bounding box.

2.7 Operation 3: Multiple atomic displacements

We move every atom in a different random direction by
a distance d; = sdy. We use dnax = 1.16d), so the factor s
should be at least 0.08 to allow bond breaking (after
SID) and it should not be much more than 0.20 or else
too many bonds would break on average. After a few
tests we fixed the value of the factor s to 0.16.

2.8 Scoring candidate clusters

We assign scores S; to each candidate cluster k before
calculating its energy. The screening (step 9) eliminates
all candidates except the one with lowest score (the best),
so that only one energy evaluation is required per cycle.
The score is a sum of three contributions:

Sp =58 48P 45 (10)
M

= exp(—Ay/d%) (11)

S = —expl(Uo - Ui) /9] (12)



and S,?) is a random number taken from a uniform
distribution in [0, p]. The distance in descriptor space
between clusters 7 and k, Ay, is given by Eq. (7), and Uy
is given by Eq, (8).

The term S,il) is large when the candidate cluster has
descriptors that are numerically close to those of clusters
already in the main set. This is the tabu part of the
algorithm: it discourages the search from revisiting
previous structures. The term S,EZ) ranges between —1
and 0 and tends toward —1 when the energy predicted by
interpolation, Uy, is equal to the lowest energy found so
far. This ensures that the search is more intense in re-
gions of descriptor space where the energy is lower on
average (this is like the “intensification” part of a tabu
search). The two terms S,E” and S,(f) work together to
safisfy the conflicting requirements of a good global
optimization: exploration of the entire space of solu-
tions, and intensification of the search in regions of
space where good solutions have been found. The term
S, is maybe not essential, but it adds randomness to the
search and favors exploration. Logically, a global opti-
mization should emphasize exploration at the beginning
and intensification toward the end. We accomplish this
by continuously varying the three key parameters of
TSDS (o, ¢, and p) from some large initial values (o, J;,
and p;) to small final values (o, o, and py). The decrease
was chosen to be exponential between the first cycle
(¢ = 1) and last cycle (¢ = N,), in analogy to the typical
cooling schedules used in SA.

a = ln(éf/éi) (13)
0 = diexpla(c — 1)/ (N = 1)] (14)

Similar formulas apply to ¢ and p.

2.9 TSDS control parameters

The parameters of Table 1 give good results for
optimization of LJ clusters and were used to generate
the results reported here. Note that N, ¢; and ¢ are
proportional to the number of atoms in the cluster.
Other parameters are not as important and were kept at
fixed values after a few tests. For example the probabil-
ities for choice of operations 1-3, were set to 0.70, 0.15,
and 0.15, and the parameters that set the tolerance for
energy and the norm of gradient in CG optimizations
were set to 0.001.

3 LJ clusters

LJ clusters are a standard testing ground for optimiza-
tion algorithms. The energy and the structure of the

Table 1. Parameters used in optimization of Lennard-Jones (LJ)
clusters

dmin = 0.933 Amax = 1.167 do =1.017
N; =100 N, =20n K =10

o; = 1.00n g =0.25 p; = 1.00
or=0.01n or =0.05 pr=0.01
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lowest known minima of each size compiled by Wales
et al. [23] are a very useful resource and most likely
contain the true global minima for » at least up to 40.
We optimized n-atom LJ clusters (n = 10-40) by TSDS,
by GA, and by a simple random search (RS). For each
cluster size, we did 20 independent runs of GA and RS
and 40 runs of TSDS to accumulate meaningful statistics
on how the algorithms perform. We used the structure
initialization described in Sect. 2.3 and CG local opti-
mization for all three methods. The initialization
(Sect. 2.3) is slightly different from the one of
Ref. [10]. We used the same GA parameters as Roberts
et al. [10] (population size 10, number of children per
generation 8, mutation probability 0.1) except for the
number of generations, Nge,, which we chose in a slightly
different way: we set Ngen = 1 for n < 26 and Ngen = 2n
for n > 27. The GA found the global minimum 100% of
the time for n < 26, so the results would be unchanged if
we used Ngen = 2n. The number of CG optimizations in
RS was set at 40n.

With these control parameters, RS and GA found the
global minimum in every run for n < 24. The TSDS
algorithm failed to find the global minimum in two out
of 40 runs (5% of cases) at n = 17, and 2.5% of cases at
n=18 and n = 21. But as shown in Table 2, TSDS
typically found the global minimum after many fewer
energy evaluations than RS and GA. The TSDS evalu-
ates the energy 100 4 20n times in the global optimiza-
tion part. After that, in most of the runs with n < 25, the
global minimum is found after only three or fewer CG
local optimizations. For instance, referring to » = 24 in
Table 2, we have 735 — 100 — 23 x 20 = 175, which is
only 2 or 3 times larger than a typical number of steps in
a local optimization.

The largest clusters for which the global minimum was
found at least 80% of the time are n = 25 for RS, n = 31
for GA, and n = 27 for TSDS. At n = 25, the average
numbers of energy evaluations before finding the global
minimum were 6.0 x 10° by RS, 8.2 x 10* by GA, and
8.0 x 10> by TSDS. TSDS could be favored in these

Table 2. Mean number of energy evaluations (random search, RS,
genetic algorithm, GA, tabu search in descriptor space, T.SDS)
before finding the global minimum of LJ clusters n = 10-24

n RS GA TSDS
10 102423 11967 369
11 109672 18296 400
12 115850 15150 423
13 160355 18267 398
14 170565 27401 476
15 229306 31866 492
16 175195 33908 521
17 197657 42989 688*
18 215869 51687 593P
19 253033 54276 582
20 235812 61829 619
21 320096 66721 722
22 412352 70235 710
23 311767 90200 670
24 346404 83863 735

4 For n =17, TSDS missed the global minimum twice in 40 runs
® Forn = 18, 21, TSDS missed the global minimum once in 40 runs
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comparisons because, in a TSDS, local optimization is
done only at the very end and it is done in a particular
order. But even the mean total number of energy evalu-
ations per run shows a clear advantage for TSDS at
n =25 it is 1.0 x 10° for RS, 1.5 x 10° for GA, and
3.9 x 10° for TSDS. By that measure, TSDS is 38 times
more efficient than GA at n = 25. Generally, the total
number of energy evaluations per run is roughly 2-5
times larger than the number of energy evaluations up to
the point where the global minimum is found. This is a
consequence of choosing a number of cycles that scales
with the number of atoms, i.e., a number of cycles that
gives a fair chance of finding the global minimum. If we
used a quasi-Newton method for local optimization, such
as Broyden—Fletcher—Goldfarb—Shanno instead of CG,
the performance of GA and RS relative to TSDS might
improve, but probably not by more than a factor of 2.

At larger cluster sizes, the frequency of success in
finding the global minimum can fall anywhere between 0
and 1. In order to make a fair comparison across dif-
ferent cluster sizes and methods, we calculate Nog, which
is an estimate of the mean number of energy evaluations
required to hit the global minimum with 90% proba-
bility. If a method fails to find the global minimum in a
fraction, v¢ of the runs, the probability of failing in each
one of m independent runs is (v¢)". So, Ngg can be esti-
mated using the mean number of energy evaluations
before the lowest minimum in each run was found, M,
and the fraction of runs in which the true global mini-
mum was missed, v

N90 ~ M[IH(OI)/IH(Vf)] s

where v was restricted to lie between 10~° and 1-1073.
This definition is not very meaningful when vy = 1 — v¢is
outside the range [0.1, 0.9] but that is unavoidable. The
factor multiplying N, makes sense when vy is inside [0.1,
0.9], for example, itis 14.2 when v, = 0.15(0.85'%? = 0.10)
and 1.21 when v = 0.85 (0.15'2' = 0.10). At n > 29 we
find v < 0.9 for all three methods. The Ngg at n = 30 is
1.7 x 107 for RS, 5.0 x 10° for GA, and 3.0 x 10? for
TSDS. Here again, the ratio Noo(TSDS)/Nyo(GA) would
double or triple if we used total numbers of energy
evaluations, but TSDS would still show a significant
advantage.

A semilogarithmic plot of Ny as a function of cluster
size for the three methods is shown in Fig. 1. Points are
omitted on the RS and TSDS curves when v, = 0. At
n > 25 RS fails too often to allow meaningful compari-
sons. The GA-to-TSDS ratio of Ny is typically between
10 and 100 for 25 < n < 35. We see a quick deterioration
of the RS method at n > 24. This is similar to what
Roberts et al. found in a study with Morse poten-
tials [10]. TSDS loses some of its advantage relative to
GA as clusters get bigger (n > 30), and GA is the only
algorithm with which we found the global minimum at
every cluster size in at least one run. In 40 runs, TSDS
could not find the global minimum of n = 35 and 38
once.! In its current version, the TSDS becomes unreli-

'We did find the global minimum of n = 35 in approximately 10%
of runs when we set N; = 200 and N, = 40n
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Fig. 1. Logarithm of the estimated number of energy evaluations
required to find the global minimum of Lennard-Jones clusters with
90% probability

able at around n > 35. There is no guarantee that it
could find the global minimum at n > 40 even with many
more independent runs. It remains to be seen whether
TSDS can be applied successfully to very large clusters,
but it clearly has an advantage over GA for n < 35. We
must point out that the advantage in TSDS is in the
number of energy evaluations, and this translates into a
computing time advantage only if the time for evaluating
energies is much larger than the time for doing TSDS
operations (e.g., calculating energy estimates by inter-
polations). So, TSDS has no practical value for LJ
cluster optimization, but it looks very promising for
optimization when the energy is modeled by complicated
potentials or first-principles methods.

Part of the reason for the success of TSDS is that it
avoids CG optimization until the very end and does SID
operations instead. If SID gave structures that were al-
most identical to local minima, it could afford a speed-
up of almost 3n (a typical number of steps in a CG
optimization). But SID operations do not generate
optimized structures. The mean energy difference
E(SID) — E(CG) between structures generated by SID
and the corresponding ones after CG optimization are
shown for a few cluster sizes in Table 3. This difference is
a few times larger than the typical energy separation
between isomers on average. That is not very accurate,

Table 3. Absolute and percentage deviation between energies of
local minima and structures generate by symmetrization of
interatomic distances

n Absolute Percentage
deviation deviation
10 1.57 5.8
15 1.32 2.7
20 1.44 1.9
25 1.75 1.8
30 1.82 1.4
35 2.49 1.6
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but it is accurate enough to drive the search toward the
lowest energy structures. We noticed in all our runs that
E(SID) — E(CG), expressed in percentage of the energy,
is either quite small (less than 1%) and nearly constant,
or very large (more than 2%, sometimes 5% or 10%)
and variable. This is a potential problem and more work
will be needed on improving the SID procedure. But
already, the speed-up due to SID is substantial.

The SID operation in TSDS plays a role similar to
that of a local optimization in “basin-hopping” methods
like the combined GA-CG of Deaven and Ho [11, 17].
In the GA-CG algorithm, arbitrary cluster structures
are mapped to the nearest local minimum by CG. So,
every valley on the potential surface gets represented by
a single point. As pointed out by Wales and Doye [17],
this effectively transforms the energy surface seen by GA
from a continuously varying function of atomic coor-
dinates to a discontinous, piecewise constant, function.
This way the GA has to solve a discrete optimization
problem, for which it is very well suited, instead of the
original continuous problem. The SID operation should
also, ideally, map every structure in a connected subset
of space to a single representative structure so as to
transform the continuous optimization problem into a
discrete problem which TSDS can handle more easily.
But the energies of SID structures differ from those of
local minima by an amount that is not constant. In that
sense, the SID operation is not optimal because it dis-
torts the original problem. But of course the great
advantage of SID over CG is that it requires no evalu-
ation of energy or forces.

Another source of speed-up for TSDS is that de-
scriptors and the interpolation (Eq. 8) effectively provide
a model energy surface which allows screening of can-
didate clusters. The energy is evaluated for only one out
of K candidates which can potentially give a speed-up of
up to K. In practice, the interpolation is not very accu-
rate, and increasing K from 10 to 50 gives little or no
improvement in performance. We did many runs for
n = 30 with a single candidate per cycle (K = 1 instead
of K =10), which effectively turns the screening off.
Another way to turn the screening off, while keeping
K =10, would have been to use descriptors that have no
correlation whatsoever with energy. The Ny for these
runs is 2.4 times larger than with K = 10, which shows
that screening works but gives only a modest speed-up.

The evolution of the lowest energy found among SID
structures as a function of the number of cycles in rep-
resentative runs for n = 20, 30, and 40 is shown in Fig. 2.
This energy typically improves only a few times during a
run. The lowest minimum found in the run of Fig. 2¢
was —182.588 (the true global minimum is —185.250).
The difference between —178.6 (Fig. 2¢) and —182.588,
4.016, is the energy-lowering produced by CG optimi-
zation of the best SID structure; in this particular case it
was a little larger than usual. It may look like the
combined TSDS-SID optimization was not very effec-
tive in this run because it decreased the energy by
roughly 3.0 between the beginning and end (Fig. 2¢)
compared with a decrease of 4.0 due to CG optimization
at the very end. But one has to realize that TSDS-SID
does more than just lower the energy: it generates a set of
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Fig. 3. Running average of the energies of the last five SID
structures, as a function of iteration number,in one representative
TSDS run with 20-, 30-, and 40-atom clusters

distinct structures, with only one or a few structures per
valley on the potential surface. It helps to have repre-
sentative structures for each valley as close to the bottom
of the valley as possible, but it is equally important to
have (ideally) precisely one representative structure for
each low-energy valley. This is almost realized in our

algorithm. In the run of Fig. 2¢, for instance, we find
that at least 650 of the 800 SID structures generated
were distinct. As intended, the penalty term (Eq. 11)
prevented the search from revisiting structures in most of
the 800 cycles.

Plots of the running average of energies of the five
last SID structures generated in a run are shown in
Fig. 3 for the same three runs as in Fig. 2. The process
by which clusters are generated has much randomness
built in and this shows in Fig. 3. However, the gradual
decrease of J, o, and p (Eqgs. 13, 14) produces a sys-
tematic decrease in the average energy of clusters gen-
erated as the search progresses. The best structure is
sometimes found near the beginning of a run (out of
luck) but the mean energy of clusters created always
goes down between the beginning and end of a TSDS
run. Notice that energies in Fig. 3 are much higher than
in Fig. 2. This is simply because there is a large vari-
abilly in the energies of SID structures and the proba-
bility of making five consecutive low-energy SID
structures is very small. Since TSDS actively tries to
avoid structures that were already visited, the quantity
plotted in Fig. 3 is not guaranteed to decrease. In fact,
if the runs were long enough, the running average of
energies would have to go up eventually, when most of
the low-energy isomers are found.

4 Conclusions

At each iteration the TSDS itself requires much more
computing time than it takes for calculating the energy
of a LJ potential, which makes it impractical for
optimizing LJ clusters. But TSDS finds the global
minima of n-atom (n < 40) LJ clusters with many
fewer energy evaluations than one of the best current
cluster optimization methods (GA—CG). Further, it
takes roughly 10%-103 less computing time than needed
for evaluating the energies by KS DFT. This makes
TSDS a very promising method for KS DFT studies of
small clusters of almost any element. Prior to this
study, we used a different, and less efficient, version of
TSDS along with KS DFT energies to search low-
energy isomers of Si, (10 <n<16) [29] and Li,
(9 < n <20) clusters [25]. We were able to rediscover,
with only a few hundred local spin density energy
calculations, the lowest known minima [5] of Si,
(n=10,11,12), and fell short of the lowest minima
for n=13-16 by 1.2 eV or less [29]. Note that the
energy needed for breaking one Si—Si bond is typically
approximately 2.0 eV, so 1.2 eV is not such a big
energy for Si, clusters. For Li, we discovered several
new structures, many of which have energies lower
than previously reported in the literature, and some of
which have triplet or higher spin multiplicity [25].
Work is under way to further improve TSDS, incor-
porate it in a KS DFT computer code, and test it over
a wider class of clusters and molecules.
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